Zellvolumen als auch die thermische Zersetzung zu $\mathrm{KAlF}_{4} \cdot 0,5 \mathrm{H}_{2} \mathrm{O}$ einfach zu erklären:*

$$
\left(\mathrm{H}_{3} \mathrm{O}\right)_{2} \mathrm{KAlF}_{6} \rightarrow \mathrm{KAlF}_{4} \cdot 0,5 \mathrm{H}_{2} \mathrm{O}+1,5 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HF} .
$$

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für ihre Unterstützung.
*Anmerkung bei der Korrektur: Inzwischen wurde dies auch durch Bentrup \& Kolditz (1989) klargestellt.

Literatur

Bentrup, U. \& Kolditz, L. (1986). Z. Anorg. Allg. Chem. 540/541, 8-14.
Bentrup, U. \& Kolditz, L. (1989). J. Therm. Anal. 34, 3-4.
Charpin, P., Lance, M., Nierlich, M., Vigner, J. \& Lambard, J. (1988). Acta Cryst. C44, 1698-1701.

Cohen, S. \& Selig, H. (1982). J. Fluorine Chem. 20, 349-356.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Johnson, C. K. (1965). ORTEP. Bericht ORNL-3794. Oak Ridge National Laboratory, Tennessee, VStA.
Kolditz, L., Bentrup, U. \& Titt, I. (1983). Z. Chem. 23, 231-232.
Massa, W. \& Babel, D. (1988). Chem. Rev. 88, 275-296.
Mootz, D., Oellers, E.J. \& Wiebcke, M. (1988a). Z. Anorg. Allg. Chem. 564 17-25.
Mootz, D., Oellers, E.-J. \& Wiebcke, M. (1988b). Acta Cryst. C44, 1334-1337.
Mootz, D., Ohms, U. \& Poll, W. (1981). Z. Anorg. Allg. Chem. 479, 75-83.
Mootz, D. \& Poll, W. (1982). Z. Anorg. Allg. Chem. 484, 158-164.
Mootz, D. \& Wiebcke, M. (1986). Inorg. Chem. 25, 3095-3097.
Morss, L. R. (1974). J. Inorg. Nucl. Chem. 36, 3876-3878.
Sheldrick, G. M. (1976). SHELX76. Programm für die Kristallstrukturbestimmung. Univ. Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Programm für die Kristallstrukturaufklärung. Univ. Göttingen, Bundesrepublik Deutschland.
Trunov, V. K., Efremov, V. A., Konstantinova, L. I., Velikodnyi, Yu. A. \& Golota, A. F. (1980). Dokl. Akad. Nauk SSSR, 253, 108-110.

Acta Cryst. (1990). C46, 192-195

Coordination Mode of 4-Pyridinecarbaldehyde Phenylhydrazone. Structure of Dichloro(4-pyridinecarbaldehyde phenylhydrazone)-(tri-n-propylphosphine)palladium(II)

By Giuseppe Bruno, Matteo Cusumano, Antonino Giannetto, Antonio Giuffrida and Giovanni Guglielmo
Dipartimento di Chimica Inorganica e Struttura Molecolare, Vill. S. Agata, Salita Sperone 31, 98010 Messina, Italy

(Received 18 April 1988; accepted 8 May 1989)

Abstract

PdCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{P}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right], \quad M_{r}=534 \cdot 8\), monoclinic, $P 2_{1} / c, a=8.049$ (1), $b=25.104$ (3), $c=$ 12.251 (2) $\AA, \beta=91.02$ (2) ${ }^{\circ}, V=2475 \cdot 1$ (4) $\AA^{3}, Z=$ $4, D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=$ $1.03 \mathrm{~mm}^{-1}, \quad F(000)=1096, T=298 \mathrm{~K}$, final $R=$ $0.044, w R=0.047$ for 2145 independent reflections [I $>3 \sigma(I)]$. The title complex was prepared by reaction of 4-pyridinecarbaldehyde phenylhydrazone (pap) with the dichloro-bridged complex $\left[\mathrm{Pd}_{2}\left(\mathrm{PPr}_{3}^{r}\right)_{2} \mathrm{Cl}_{4}\right]$ in dichloromethane. $\left[\mathrm{Pd}_{(}\left(\mathrm{PPr}_{3}^{r}\right)(\mathrm{pap}) \mathrm{Cl}_{2}\right]$ has a squareplanar geometry with the two chlorides trans to each other. The hydrazone coordinates through the pyridine N atom in a syn configuration instead of through the generally preferred N -iminic site.

Introduction. The capability of hydrazones to behave as nitrogen-donor ligands with respect to transition metals is well established (Cockburn, Howe, 0108-2701/90/020192-04803.00

Keating, Johnson \& Lewis, 1973). In the hydrazones derived from aldehydes $R_{1} R_{2} \mathrm{C}=\mathrm{N}^{1}-\mathrm{N}^{2} \mathrm{H} R_{3}$ both iminic and aminic N atoms $\left(\mathrm{N}^{1}\right.$ and $\left.\mathrm{N}^{2}\right)$ are potential donor sites (Stapfer, D'Andrea \& Herber, 1972; Stapfer \& D'Andrea, 1971; Bresciani-Pahor, Calligaris, Delise, Randaccio, Maresca \& Natile, 1976; Nolte \& Singleton, 1974; Natile, Gasparrini, Misiti \& Perego, 1977), though coordination through N^{1} is generally observed. When R_{1} or R_{2} are groups bearing donor atoms the hydrazone can exhibit at least one more coordination mode. In addition, these hydrazones may adopt syn or anti configurations. In this paper we report the structure of the complex trans $-\left[\mathrm{Pd}_{(}\left(\mathrm{PPr}_{3}^{n}\right)(\right.$ pap $\left.) \mathrm{Cl}_{2}\right]$ where the pap ligand (4-pyridinecarbaldehyde phenylhydrazone) is a potentially multidentate ligand. This compound was obtained by the cleavage of the chloro-bridged complex $\left[\mathrm{Pd}_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2} \mathrm{Cl}_{4}\right]$ with the hydrazone. Its IR (C) 1990 International Union of Crystallography
spectrum (Nujol mull), showing only one $\mathrm{Pd}-\mathrm{Cl}$ stretching frequency at $350 \mathrm{~cm}^{-1}$, suggests that the two chlorides are trans to each other (Adams, 1967) but does not give any indication of the bonding mode of the pap ligand. On the other hand preliminary data on the photoisomerization (Guglielmo, Giuffrida, Cusumano, Campagna \& Ricevuto, 1988) of the coordinated hydrazone from the syn to the anti form suggest that the pap ligand is coordinated through the pyridine N atom. There is very little difference in the quantum yields for the photoisomerization of the free and coordinated hydrazone. Clearly coordination to palladium through the iminic or aminic N atom would hamper the process. In order to gain conclusive evidence on the geometry of the complex we have determined the crystal and molecular structure by X-ray analysis. Our results show that the complex has a square-planar geometry with the two Cl atoms trans to each other and that the hydrazone is indeed coordinated through the pyridine N atom in the syn configuration.

Experimental. The ligand pap was prepared by condensation of 4-pyridinecarbaldehyde with phenylhydrazine in methanol in the presence of acetic acid and crystallized from ethanol. The trans $-\left[\operatorname{Pd}\left(\operatorname{PPr}_{3}^{n}\right)-\right.$ (pap) Cl_{2}] complex was obtained by the cleavage of the dichloro-bridged $\left[\mathrm{Pd}_{2}\left(\operatorname{PPr}_{3}^{n}\right)_{2} \mathrm{Cl}_{4}\right]$ complex with the pap ligand in a molar ratio $1: 2$ in acetonechloroform. After evaporation of the solvent, the complex was crystallized from methanol-acetone.

The IR spectra in the range $250-4000 \mathrm{~cm}^{-1}$ were recorded as Nujol mulls on a Perkin-Elmer 783 spectrometer. Single crystals suitable for X-ray analysis were crystallized from a methanol solution; a yellow prism with approximate dimensions $0 \cdot 20 \times$ $0.20 \times 0.15 \mathrm{~mm}$ was used for intensity-data collection. Accurate unit-cell dimensions and crystal orientation matrices were obtained from leastsquares refinement of $2 \theta, \omega, \chi$ and ψ values of 20 strong reflections in the range $14<2 \theta<25^{\circ}$. Siemens-Stoe four-circle diffractometer, graphitemonochromated Mo $K \alpha$ radiation, $\omega / 2 \theta$ mode, $2 \theta_{\max }=50^{\circ}(-10 \leq h \leq 10,0 \leq k \leq 30,-15 \leq l \leq 0)$. Three standard reflections (13 $2,21 \overline{3}$ and $\overline{3} 34$) monitored every 3600 s showed no significant intensity variation over the total exposure time. Lorentz and polarization corrections were applied to the intensity data but no correction for absorption was considered.

The structure was solved using standard Patterson methods, successive least-squares refinements (on F) and difference Fourier maps. All non-H atoms were refined anisotropically, while H atoms were added at calculated positions and included in the structurefactor calculations with a common thermal parameter ($U=0.08 \AA^{2}$). Of 3980 measured independent
reflections, 2145 having $I>3 \sigma(I)$ were used to refine 265 parameters to final residuals of $R=0.044$ and $w R=0.047, \quad w=1.3799 /\left[\sigma^{2}\left(F_{o}\right)+0.00070 F_{o}^{2}\right], \quad S=$ $1 \cdot 146,(\Delta / \sigma)_{\max }<0 \cdot 7$, largest peak in final difference map $0.47 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974). All calculations were performed with SHELX76 (Sheldrick, 1976) and PARST (Nardelli, 1983) systems of programs on an IBM 4341 computer at the 'Centro di Calcolo dell' università di Messina'. The refined structure was plotted using ORTEP (Johnson, 1976).*

Discussion. Atomic positional parameters for non-H atoms are listed in Table 1. The molecular structure is depicted in Fig. 1 together with the atomic labelling scheme. Bond distances and angles are given in Table 2.

The weighted mean plane through the four donor atoms shows a lack of planarity with $\mathrm{N}(1)$ and $\mathrm{P}(1)$ deviating by 0.128 (7) and 0.015 (3) \AA, respectively. $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ are -0.016 (3) and -0.016 (3) \AA on the opposite side of the plane, indicating a slight distortion towards the tetrahedral configuration around the Pd atom, which lies 0.049 (1) \AA out of this plane. While the two trans- $\mathrm{Pd}-\mathrm{Cl}$ bond distances [mean value $2.288(5) \AA$] are in good agreement with the values found in various squareplanar complexes of palladium (Albinati, Anklin, Ganazzoli, Ruegg \& Pregosin, 1987), the $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ bond angle deviates from linearity $\left[176.4(5)^{\circ}\right]$. The $\mathrm{Pd}-\mathrm{P}(1)$ distance of $2 \cdot 232(2) \AA$ is similar to that found in trans- $\left[\mathrm{PdCl}_{2}\left(2-\mathrm{NH}_{2}-3-\mathrm{Mepy}\right)\left(\mathrm{PEt}_{3}\right)\right]$ (Albinati, Arz \& Pregosin, 1987); in $\operatorname{PPr}_{3}^{n}$ the structural features are as usual, as well as the large thermal parameters or disorder of the propyl chains. The Pd atom completes its coordination sphere by binding the pyridine N atom of the ligand (pap), in contrast to the generally preferred N -iminic or the rarely observed N-aminic (Galli, Gasparrini, Maresca, Natile \& Palmieri, 1983) coordination. The $\mathrm{Pd}-\mathrm{N}(1)$ bond distance of $2 \cdot 115(6) \AA$ is relatively long (because of the large trans influence of PPr_{3}^{n}) and is less than that found in the cited complex (Albinati, Arz \& Pregosin, 1987), $2 \cdot 155$ (5) \AA. Steric and electronic factors could both cause such a difference.

The pyridine ring (which is planar) makes an angle of $56.1(1)^{\circ}$ with the coordination plane. Pyridinetype ligands normally adopt the best orientation for $p \pi-d \pi$ bonding between metal d orbitals and the ligand π-system; in the present compound the long

[^0]Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for non -H atoms with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathrm{a}_{i} \cdot \mathbf{a j}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Pd}(1)$	571 (1)	1321 (1)	1956 (1)	$62 \cdot 0$ (1)
$\mathrm{Cl}(1)$	2465 (3)	1061 (1)	3271 (2)	92.6 (1)
Cl(2)	-1354 (3)	1525 (1)	631 (2)	113.0 (1)
$\mathrm{P}(1)$	-962 (3)	1728 (1)	3208 (2)	$80 \cdot 3$ (1)
C(1)	220 (12)	2000 (4)	4380 (7)	99.6 (4)
C(2)	1513 (15)	2374 (4)	4085 (10)	$114 \cdot 3$ (5)
C(3)	2626 (16)	2488 (6)	5070 (13)	$163 \cdot 2$ (7)
C(4)	-2173 (17)	2308 (5)	2663 (10)	172.0 (8)
C(5)	-3100 (27)	2602 (9)	3151 (22)	267.2 (17)
C(6)	-4165 (18)	3003 (6)	2570 (16)	183.1 (9)
C(7)	-2458 (19)	1205 (6)	3741 (13)	192.0 (9)
C(8)	-3023 (29)	1157 (10)	4822 (13)	312.7 (18)
C(9)	-4014 (15)	694 (6)	4926 (15)	$176 \cdot 2$ (8)
$\mathrm{N}(1)$	2061 (8)	951 (3)	770 (5)	64.3 (2)
$\mathrm{C}(10)$	1522 (10)	576 (4)	105 (7)	75.6 (2)
C(11)	2496 (11)	330 (3)	-662 (7)	74.4 (3)
$\mathrm{C}(12)$	4127 (10)	493 (3)	-782 (6)	66.1 (3)
C(13)	4688 (10)	887 (3)	-91 (7)	67.4 (3)
$\mathrm{C}(14)$	3644 (10)	1101 (3)	676 (7)	68.6 (3)
C(15)	5220 (12)	255 (3)	-1587(6)	72.6 (3)
N(2)	6625 (8)	469 (3)	-1761 (5)	67.9 (2)
$\mathrm{N}(3)$	7622 (9)	241 (3)	-2475 (5)	$77 \cdot 1$ (3)
$\mathrm{C}(16)$	9083 (10)	500 (4)	-2758(6)	$65 \cdot 1$ (3)
$\mathrm{C}(17)$	9527 (12)	983 (4)	-2312 (8)	$87 \cdot 1$ (4)
C(18)	10983 (15)	1222 (4)	-2627 (9)	100.0 (4)
$\mathrm{C}(19)$	11988 (13)	995 (5)	-3380 (9)	102.5 (5)
C(20)	11577 (12)	523 (5)	-3801 (8)	93.8 (4)
C(21)	10115 (12)	273 (4)	-3521 (7)	81.9 (4)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2 \cdot 294$ (2)	$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2 \cdot 283$ (3)
$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.232 (2)	$\mathrm{Pd}(1)-\mathrm{N}(1)$	2.115 (6)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.840 (7)	$\mathrm{P}(1)-\mathrm{C}(4)$	1.870 (8)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.904 (9)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.453 (13)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.516 (16)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.213 (22)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.496 (24)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.414 (9)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.417 (25)	$\mathrm{N}(1)-\mathrm{C}(10)$	1.315 (10)
$\mathrm{N}(1)-\mathrm{C}(14)$	1.336 (9)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.380 (11)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.385 (10)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.373 (10)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.380 (10)	$\mathrm{C}(12)-\mathrm{C}(15)$	1.461 (10)
$\mathrm{N}(2)-\mathrm{C}(15)$	1.274 (9)	$\mathrm{N}(2)-\mathrm{N}(3)$	1.328 (8)
$\mathrm{N}(3)-\mathrm{C}(16)$	1.394 (10)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.375 (12)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.377 (12)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.363 (13)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.334 (13)	$\mathrm{C}(20)-\mathrm{C}(21)$	$1 \cdot 382$ (12)
$\mathrm{C}(21)-\mathrm{C}(16)$	$1 \cdot 384$ (10)		
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	176.4 (1)	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	91.0 (1)
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	88.8 (2)	$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	90.5 (1)
$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{N}(1)$	89.8 (2)	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	178.7 (2)
$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(14)$	119.3 (5)	$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	123.8 (5)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(10)$	116.9 (6)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	122.9 (7)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120 \cdot 2$ (7)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	116.6 (7)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	119.4 (8)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(1)$	123.9 (7)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	$121 \cdot 1$ (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	122.3 (8)
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{N}(2)$	119.1 (8)	$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{N}(3)$	118.5 (7)
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(16)$	119.0 (7)	$\mathrm{N}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	121.8 (7)
$\mathrm{N}(3)-\mathrm{C}(16)-\mathrm{C}(21)$	119.6 (8)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.2 (8)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	121.8 (9)	$\mathrm{C}(18)-\mathrm{C}) 19)-\mathrm{C}(20)$	$119 \cdot 1$ (9)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	121.0 (9)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	$120 \cdot 3$ (9)
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	118.5 (8)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	114.9 (3)
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	113.7 (4)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$106 \cdot 3$ (4)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$114 \cdot 1$ (8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.8 (10)
$\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	128.2 (16)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.8 (24)
$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	126.6 (15)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$110 \cdot 2$ (18)
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1)$	104.3 (5)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(1)$	108.0 (6)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(4)$	109.3 (8)		

$\mathrm{Pd}-\mathrm{N}$ bond distance indicates that such an interaction is not present and the observed twist is essentially due to the molecular packing.

As usual, the phenylhydrazone group adopts a syn configuration (Willey \& Drew, 1983), the bulkier phenyl and pyridine groups lying on opposite sides of the $\mathrm{C}-\mathrm{N}$ double bond. The pyridine and phenyl rings make angles of $11.5(5)$ and $6.6(5)^{\circ}$, respectively, with the $\mathrm{C}=\mathrm{N}-\mathrm{N}$ fragment. In a series of investigations (Drew, Vickery \& Willey, 1984) it was established that the dimensions of the $\mathrm{C}\left(s p^{2}\right)-\mathrm{NH}-\mathrm{N}=\mathrm{C}$ fragment are very dependent upon the presence or absence of an intramolecular hydrogen bond; these distances for compounds with intramolecular hydrogen bonding are: $1.40 \AA$ for $\mathrm{C}\left(s p^{2}\right)-\mathrm{NH}, 1.31 \AA$ for $\mathrm{HN}-\mathrm{N}$ and $1.31 \AA$ for $\mathrm{N}=\mathrm{C}$, and $1.36,1.39$ and $1.28 \AA$, respectively, for compounds without hydrogen bonding. In the present compound, where an intermolecular hydrogen bond is present, the corresponding bond lengths

Fig. 1. ORTEP drawing (Johnson, 1976) of the molecular structure of the title compound showing the atom labelling. Thermal ellipsoids are drawn at the 40% probability level.

Fig. 2. PLUTO drawing (Motherwell \& Clegg, 1978) of the molecular packing.
are $1.394(10) \AA$ for $\mathrm{N}(3)-\mathrm{C}(16), 1.328(8) \AA$ for $\mathrm{N}(2)-\mathrm{N}(3)$ and 1.274 (9) \AA for $\mathrm{C}(15)=\mathrm{N}(2)$.

The molecular packing is mainly determined by an intermolecular hydrogen bond between $\mathrm{Cl}(1)(1-x$, $-y,-z$) and $\mathrm{N}(3)[3 \cdot 409(8) \AA]$ of two molecules related by an inversion centre. There is also a contact ($<3.65 \AA$) between the $\mathrm{C}=\mathrm{N}-\mathrm{N}$ fragment and the pyridine ring $(1-x,-y,-z)[\mathrm{C}(12) \cdots \mathrm{C}(15) 3.49$ (1), $\mathrm{C}(13) \cdots \mathrm{C}(15) 3.53(1), \mathrm{C}(10) \cdots \mathrm{N}(2) 3.62(1) \AA \AA]$ and such an arrangement, depicted in Fig. 2, may be responsible for the pyridine twist.

References

Adams, D. M. (1967). Metal-Ligand and Related Vibrations. London: Arnold.
Albinati, A., Anklin, C. G., Ganazzoli, F., Ruegg, H. \& Pregosin, P. S. (1987). Inorg. Chem. 26, 503-508.
Albinati, A., Arz, C. \& Pregosin, P. S. (1987). Inorg. Chem. 26, 508-513.
Bresciani-Pahor, N., Calligaris, M., Delise, P., Randaccio, L., Maresca, L. \& Natile, G. (1976). Inorg. Chim. Acta, 19, 45-49.
Cockburn, B. N., Howe, D. V., Keating, T., Johnson, B. F. G. \& Lewis, J. (1973). J. Chem. Soc. Dalton Trans. pp. 404-410.

Drew, M. G. B., Vickery, B. \& Willey, G. R. (1984). Acta Cryst. C40, 304-306.
Galli, B., Gasparrin, F., Maresca, L., Natile, G. \& Palmieri, G. (1983). J. Chem. Soc. Dalton Trans. pp. 1483-1487, and references therein.
Guglielmo, G., Giuffrida, A., Cusumano, M., Campagna, S. \& Ricevuto, V. (1988). Polyhedron. 7, 207-211.
International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PlUto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Natile, G., Gasparrini, F., Misiti, D. \& Perego, G. (1977). J. Chem. Soc Dalton Trans. pp. 1747-1752.
Nolte, M. J. \& Singleton, E. (1974). J. Chem. Soc. Dalton Trans. pp. 2406-2410.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stapfer, C. H. \& D'Andrea, R. W. (1971). Inorg. Chem. 10, 1224-1227.
Stapfer, C. H., D'Andrea, R. W. \& Herber, R. H. (1972). Inorg. Chem. 11, 204-207.
Willey, G. R. \& Drew, M. G. B. (1983). Acta Cryst. C39, 403-407.

Acta Cryst. (1990). C46, 195-197

Structure of Di- μ-methoxo-bis[dichlorodimethoxomolybdenum(V)]*

By B. Kamenar, B. Korpar-Čolig, M. Penavić and M. Cindrić
Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, PO Box 153, 41001 Zagreb, Yugoslavia

(Received 7 March 1989; accepted 18 May 1989)

Abstract

Mo}_{2} \mathrm{Cl}_{4}\left(\mathrm{OCH}_{3}\right)_{6}\right], M_{r}=519 \cdot 9\), monoclinic, $P 2_{1} / n, a=12.029(2), b=9.615$ (2), $c=7 \cdot 240$ (1) \AA, $\beta=95.60(1)^{\circ}, \quad V=833.38 \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.074 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA, \quad \mu=$ $17.77 \mathrm{~mm}^{-1}, F(000)=508$, final $R=0.056$ for 1118 reflections. The dimeric molecules, located on crystallographic inversion centres, consist of two edgesharing octahedra. Each Mo atom is coordinated by a pair of cis terminal Cl atoms [2.391 (2) and 2.393 (2) Å], a pair of trans terminal methoxo O atoms $[1.811$ (5) and 1.801 (6) \AA], and a pair of cis bridging methoxo O atoms $[2.027$ (5) and 2.029 (5) \AA]. The Mo-Mo distance is 2.733 (1) \AA.

Introduction. The crystal structure analysis of the title complex forms part of our research on Mo^{v} complexes with O - and N -donor ligands. The

[^1]0108-2701/90/020195-03\$03.00
attempts to prepare such complexes with different ligands, e.g. methionine or morpholine in methanol as solvent, always resulted in the binuclear chloro(methoxo) complex $\mathrm{Mo}_{2} \mathrm{Cl}_{4}\left(\mathrm{OCH}_{3}\right)_{6}$ (Kamenar, Korpar-Čolig, Penavić \& Cindrić, 1988b). It was of interest to determine the crystal structure of this complex in order to establish the type of bridging between the two Mo atoms, the strength of the $\mathrm{Mo}^{\mathrm{v}}-\mathrm{Mo}^{\mathrm{v}}$ interaction, as well as to compare our findings with earlier works (Cotton, 1987).

Experimental. In the attempt to prepare the complex of Mo^{v} with methionine, by mixing MoCl_{5} with methionine in dry methanol, the title compound was isolated in low yield as a first-reaction product. Deep-red-brown crystals sensitive to air and moisture were separated by filtration in a dry box under dry nitrogen. Alternatively, the same complex can be obtained by the procedure given by Funk, Hesselbarth \& Schmeil (1962).
© 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52220 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Reported at the 11th European Crystallographic Meeting, Vienna 1988, but with the space group assigned as P_{2} / c (Kamenar, Korpar-Čolig, Penavić \& Cindrić, 1988a).

